
12th ICCC, 27-29 September 2011, Selangor, Malaysia © atsec information security, 2011

Evaluating Third-Party Code:
How Can It Be Trusted?

Courtney Cavness

www.atsec.com
courtney@atsec.com

12th ICCC, September 2011 © atsec information security, 2011 2

Overview
 Purpose of “process“ work units

- Establish trust in the TOE developer

 Purpose of “technical“ work units
- Validate that the TOE security functionality works as expected

 Problem: Incorporated, third-party component
- No defined method in the CC to establish trustworthiness of the third-party

hardware/software developer or the third-party code itself

 Solution:
- Proposed “Trusted Supplier“ assurance package from EAL2 to EAL4
- Defined acceptance procedure at EAL3 and EAL4

At lower levels, this issue is not evaluated. For higher assurance levels, the requirements
expressed in this paper may not be sufficient, and more formal analysis of the semantics of
third-party code and more strict controls of the development environment may be required to
ensure that an attacker with a high attack potential would be unable to attack the
organization’s computers and manipulate the code developed on its systems.

12th ICCC, September 2011 © atsec information security, 2011 3

ALC “Process” Families:
 CMC / CMS – reliable version control of TOE items

is in place
 DEL – a secure delivery process is used
 DVS – sufficient logical and physical access controls are applied

to protect the code from unauthorized access, and hiring
practices help ensure employees are themselves trustworthy

 FLR – flaw reports are accepted and tracked, and consumers are
alerted to fixes

 LCD – lifecycle processes are in place (i.e., to facilitate approval
of code advancing through development/test/release stages)

 TAT – known and dependable tools and processes are used to
create and implement the TOE

All help establish that the developer is a “trusted“ entity.

12th ICCC, September 2011 © atsec information security, 2011 4

Trusted Developer
The TOE developer demonstrates that they:
 Have “vetted“ employees (via some established hiring practices)

Note: Currently, CC evaluation doesn‘t ensure the developer or it‘s
employees are non-criminal (i.e., there is no investigation into company
shareholders / validation of specific results of background checks, if
performed).

 Protect the TOE from unauthorized access
 Can be depended upon to create a reproducible end product (i.e.,

version control)
 Offer support for flaws, so the product remains stable in the future
 Provide secure delivery (preventing masquerading attempts and

ensuring the end product is authentic)

This provides assurance that the TOE developer‘s product is not
malicious, its integrity is maintained, and it is authentic.

12th ICCC, September 2011 © atsec information security, 2011 5

”Technical” Classes:

 ADV
– validate that the TOE security functionality is sufficiently

documented (per EAL)
 ATE

– validate that the TOE security functionality is adequately
tested (works as expected / claimed)

 AVA
– validate that there are no vulnerabilities in the TSF (per EAL,

either publicly-known or discovered via pen test)

All help establish that the TOE code itself is trustworthy.

12th ICCC, September 2011 © atsec information security, 2011 6

Problem …
In many cases, the developer undergoing evaluation did
not create all TOE components, but incorporated some
from third parties.

 Public libraries
 Applications
 Kernels
 Operating Systems
 Code inherited through mergers and acquisitions
 Flaw fixes
...if any of these are created by a different organization, they are

considered third-party components

Some organizations don‘t even realize they have incorporated third-
party components in their products.1
1“Report: Reused, Third Party Code Major Sources of Insecurity,“
30% of applications submitted to Veracode as “internally developed“ contained code from third party
suppliers. http://threatpost.com/en_us/print/6737

12th ICCC, September 2011 © atsec information security, 2011 7

 Bundle applications for end-user convenience

 Avoid development efforts spent “re-inventing the wheel“

 Save money by using more cost-efficient labor

 Take advantage of different time zones for quick turn-around
– Example: testing/flaw fix performed on newly-developed code in a

cycle not interrupted by typical business hours in a single country

Third-Party Components: Benefits

12th ICCC, September 2011 © atsec information security, 2011 8

Third-Party Components: Drawbacks
 The component might inadvertently introduce

vulnerabilities:
– Some flaws occur simply as an extension of being incorporated with another

developer’s code.
– Insufficient parameter checking

For example, one developer has a module that has no external interfaces, and assumes
that trusted interfaces won't request invalid parameters. However, another component
developer has an external interface that does not check for valid parameters because it
merely passes it on to the other component, potentially exposing the code to buffer
overflows, cross-site scripting, and similar types of vulnerabilities, etc.

 Documentation errors (open ports, etc.)
 The code/component might not be able to be fully understood

– Lack of source code, documentation, design information, testing
 Configuration errors
 The component could contain back doors or be malicious

A developer could be held legally liable if their products contain
malware.

12th ICCC, September 2011 © atsec information security, 2011 9

Sample Attack Scenario:
 A logic bomb incorporated in an open source code component

that “phones home“ with sensitive information gathered.
 Using the table on page 421 of the CEM, the author‘s estimation of the attack

potential shows that the corresponding acceptance procedure should be EAL3 or
EAL4.

Malicious Code: What is the Potential?

23 – High (EAL5)12 – Enhanced /
Basic (EAL3)

RESULTS:

00Equipment

10 (assuming remote
access is possible to
internal network)

4Window of
Opportunity

30Knowledge of TOE

66Expertise

42Time

Most AmountLeast AmountFactor

12th ICCC, September 2011 © atsec information security, 2011 10

Types of Third-party Developers
 Unknown (and therefore, inherently untrusted)

– Open Source
– Unwilling to be evaluated
– Unable to be evaluated (i.e, inherited, “old age“ code)

 Known
– Can be identified and contacted
– Willing to undergo evaluation for trustworthiness

12th ICCC, September 2011 © atsec information security, 2011 11

How to Trust Each Type
 Known third-party:

SOLUTION: Evaluate the third-party developer, not the component
“Trusted Supplier“ (SAR package) separate evaluation performed by accredited
laboratory

 Unknown (inherently untrusted) third-party:
SOLUTION: Evaluate the component, not the third-party developer

Acceptance Procedure performed by the TOE developer, verified during TOE
evaluation.

Currently, the CC contains the concept that an acceptance procedure should be
performed at EAL4 for third-party code (ALC_CMC.4-10). However, such a
procedure is not defined, nor are any specific requirements provided.

In both cases, determining whether the security functionality (if any) provided
by the third-party code works as expected, is adequately tested, and matches
the ST claims can be verified by an accredited laboratory during the “technical”
portion of CC evaluation.

12th ICCC, September 2011 © atsec information security, 2011 12

Proposed “Trusted Supplier”
Assurance Package
 The Common Criteria already provides the framework

necessary to establish the trustworthiness of a developer:
the ALC “Process” families.

 Code from these Trusted Suppliers could then be incorporated into other IT
products and treated no differently than if it were produced by a TOE developer’s
own resources; it would simply undergo their normal integrity and functionality
tests since the following would have already been established about the third-
party developer:

- lifecycle processes are in place (i.e., to facilitate code peer-review and approval of code
changes)

- hiring practices check the background of their employees
- flaw reports are accepted and consumers are alerted to flaw fixes
- a secure delivery process is used
- version control is maintained
- sufficient logical and physical access controls are applied to protect the code from

unauthorized access

Question: Who pays for third-party evaluation?
– TOE Sponser: may specify that the TOE include the third-party component.
– Third-party developer: market differentatior, can easily be included in an IT developer‘s

supply chain.
– TOE developer: will save money / reduce development effort by using the third-party.

12th ICCC, September 2011 © atsec information security, 2011 13

Trusted Supplier Methodology

 CMC.2 (uses versioning – unique ID)

 CMS.3 (maintain the implementation
representation itself - not object code
- for supply chain considerations)

 DEL.1 (uses secure delivery)

 DVS.1 (add mandatory non-criminal
background check of employees
required)

 FLR.3 (to “push“ AUTOMATIC
distribution of fixes to registered
users)

 LCD.1 (add mandatory peer-code
review to internal best practice
standards)

 TAT.1 (since the TOE developer may
not accept compiled code and
integration of a component developed
in a different language is an issue)

Current ALC Assurance Class

3321TAT

21111LCD

FLR

22111DVS

111111DEL

5554321CMS

5544321CMC

EAL7EAL6EAL5EAL4EAL3EAL2EAL1Family

At a minimum, the following are required to establish the third-
party developer as “trusted“ (per slide #5):

12th ICCC, September 2011 © atsec information security, 2011 14

Trusted Supplier Methodology (Cont’d)
 Certification valid for 2 years and tied to the specific site(s) listed on the

Trusted Supplier certificate.
– Initial site visit required, then sites re-visited only if there is substantial change in

physical security (i.e., building change or merger resulting in different physical security
applied). In lieu of continual site visits, other evidence such as internal audit results (for
adherence to processes), developer interviews via phone, digital photos (of minor
physical security changes) will suffice.

 Trusted Supplier certification can also apply to other CC efforts within the same
organization. In other words, if a global company was undergoing CC certification of a
product developed/tested etc. in the US and Canada, and both pertinant sites had up-to-date
Trusted Supplier certification, no ALC evaluation need be done.

Note: Trusted Supplier evaluation covers CMS for the types of items required to be
maintained in the CM system. It won’t be examined by consuming TOE developers.

 EAL of the Trusted Supplier must match (or be higher) than the TOE being evaluated. Default
EAL level is equivilant to EAL2, but TOE developer can augment only the CMC and/or CMS
families to upgrade to EAL3 or EAL4. Does not apply to EAL5 or higher.

 If different tools, CM systems, lifecycle models, delivery methods, etc. are in use at a site,
they must all be evaluated.

12th ICCC, September 2011 © atsec information security, 2011 15

Trusted Supplier: Related Concepts

This proposed methodology supplements and augments the
related concept:

– The Bundesamt für Sicherheit in der Informationstechnik (BSI) Site
Certification

- Similarities

- Differences

12th ICCC, September 2011 © atsec information security, 2011 16

Evaluation approach for “unknown”
third-party code:
Problems are likely:
 Incompatibility error

– Found as part of normal TOE developer testing or CC evaluation activities.

 Design / logic error
– May be found as part of CC evaluation activities (AVA / IND)
– May be found during manual source code review
– Requires design documentation from TOE developer regarding:

- Purpose of the third-party code
- How the third-party code is used in the TOE

Note: Evaluated in ADV work units if the third-party code implements TSF or has dependencies
to the TSF. Examined in AVA work units if does not affect the TSF, but might still cause
vulnerabilities (i.e., XSS in the presentation layer of a web-based software but not part of
“business logic“.) If 3rd-party code can interfere with TSF (i.e., running in the same process
space), it can be considered the TOE environment.

 Malicious code
– May be found during manual source code review

Note that functional tests are a “positive“ check on whether the expected functionality is
provided, but a “negative“ check is necessary to make sure it doesn‘t perform additonal,
unexpected functionality. This type of negative check is performed during AVA and
manual code review.

12th ICCC, September 2011 © atsec information security, 2011 17

Proposed Acceptance Procedure

 Which code is subject to acceptance procedures?

All third-party code that is part of the TOE security functionality (TSF)
must undergo acceptance procedures, regardless if it is SFR-enforcing,
SFR-supporting, or SFR-non-interfering.

Note: For code that is not reviewed, it must be obvious that any - even
malicious - behavior of this code will have no impact on the
enforcement of the security objectives and the SFRs defined in the
Security Target.

12th ICCC, September 2011 © atsec information security, 2011 18

 ALC_CMC.4-10
Must be expanded to define an acceptance procedure at EAL4 to consist of a
documented, manual review (potentially combined with some tool-based
analysis) performed by one or more of the TOE developer’s vetted employees.

The review should be performed on any TSF code that is developed or
changed by subcontractors or third-parties (including open source
communities) to make sure it performs the expected — and only the
expected — functionality. The review should be especially looking for
malicious code, unintentional vulnerabilities, back doors, etc.

- If the incorporated code is large, the effort to perform code review is a
daunting task.

- Note that running code through software such as FxCop and/or Coverity is can
be used to support the acceptance procedure (i.e. to minimize bugs) but the
tools themselves cannot interpret what the code is doing.

 ALC_CMC.3-10
Must be added to define an acceptance procedure at EAL3 to consist of TOE
developer unit test specifically for the third-party TSF code.

Proposed Acceptance Procedure
(Cont’d)

12th ICCC, September 2011 © atsec information security, 2011 19

Proposed Acceptance Procedure
(Cont’d)

 ALC_CMS
The developer must keep a copy of the incorporated third-party
implementation representation at the specific version for both
EAL3 and EAL4.

– The 3rd party code accepted into the TOE must be the actual source
files. Object code that is pre-compiled by a 3rd party cannot be used
to build the TOE, because that code cannot be evaluated, effectively
rendering it ”black box.” There is no way to relate compiled .jars
(object code) back to source code.

– ALC_CMS.2-3 should be expanded:
- The evaluator shall check that the configuration list indicates the developer

of each TSF relevant configuration item, … (add) …if different from the TOE
developer undergoing evaluation. For example, the relevant third-party
component developer or subcontractor.

12th ICCC, September 2011 © atsec information security, 2011 20

Proposed Acceptance Procedure
(Cont’d)

 ALC_FLR
Is required. The TOE developer must assume the responsibility for
monitoring for flaw reports for the third-party code, obtaining/creating
flaw fixes, testing the fix, and securely distributing the fix to the TOE
users. This is true for not only incorporated, but also bundled, third-
party code.

 AVA
Should specify that the evaluator must review any incorporated third-
party code for potential vulnerabilities (TSF or not).

 TDS
Design documents and test coverage of the third-party code must be
provided by the TOE developer.

12th ICCC, September 2011 © atsec information security, 2011 21

 ALC_LCD
The lifecycle information must include a role
responsible for determining when the third-party code is
finalized, and how and when it is integrated into the code base,
and which roles are allowed to make additional changes after
that point.

– The third-party developer can even check the source code into the
TOE organization’s CM system, but it is the TOE organization that
must decide which code is included in the product build.

– Only the code that gets integrated into the build is of concern. After
integration, the code is under the control of the TOE organization and
remains so, and the CC evaluator is only concerned with what
happens from that point in the life cycle forward.

Proposed Acceptance Procedure
(Cont’d)

12th ICCC, September 2011 © atsec information security, 2011 22

 ALC_LCD – The acceptance procedure should be
documented to describe:

- role/department that reviews the code
- depth/rigor of review (description of activities/tools)
- lifecycle of how/when files are reviewed, accepted, and checked into

the respective CM system for maintenance / inclusion into the TOE.
- how it is determined that the 3rd-party has finished its work?
- How the review activities are documented (and that document itself,

managed)

 ALC_LCD.1-1 term “subcontractor” CEM para 1181 should be
expanded to include third-party code and trusted suppliers.

Proposed Acceptance Procedure
(Cont’d)

12th ICCC, September 2011 © atsec information security, 2011 23

Summary
 Incorporating third-party components implies a

certain level of committment to that component.
– The difference between being involved and being committed:

Bacon and Egg breakfast

– The developer who incorporates a third-party component is
committed to testing / maintaining it. It is now the TOE developer‘s
reputation, liability, future sales at stake.

 The CC already contains the means to establish “trust“ in third-
party developers.
– Existing CC work units can be arranged in a separate assurance

package to certify a known third-party developer as “trusted.”
– In situations where the third-party is unknown, expanding and

specifying the already-existing CC notion of an “Acceptance Criteria”
can offer some assurance that the code itself is “ trusted.”

12th ICCC, September 2011 © atsec information security, 2011 24

Acknowledgements:

I would like to thank my valued colleagues who gave their expert
opinions on what constitutes a valid acceptance procedure, and
provided input / review of this presentation and the ideas
contained within:

– Helmut Kurth
– Stephan Mueller
– Fiona Pattinson
– Yi Mao
– Clemens Wittinger
– Jeremy Powell
– Sebastian Mayer

