
©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Apostol Vassilev,
Principal Consultant
September 23,2009.

Taking White Hats to the Laundry: How to
Strengthen Testing in Common Criteria

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product Testing in Common Criteria

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product Testing in Common Criteria

• Functional and penetration testing are
important tools for gaining assurance in the
evaluated product

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product Testing in Common Criteria

• Functional and penetration testing are
important tools for gaining assurance in the
evaluated product

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product Testing in Common Criteria

• Functional and penetration testing are
important tools for gaining assurance in the
evaluated product

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product Testing in Common Criteria

• Functional and penetration testing are
important tools for gaining assurance in the
evaluated product

• Problem: the testing methodology defined in
CC is underspecified
results are difficult to reproduce
affects the public’s perception of the value of

evaluations

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Outline

• Introduction
 Current situation with product testing in CC
 Recent advancements in testing and their potential use in CC

• Proposal
 Modular assurance packages based on interface-specific attacks
 Benefits from using such packages

• Conclusions and future work

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product testing according to CEM

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product testing according to CEM

• The goal is to test the behavior of TOE
 as described in ST and as specified in the evaluation evidence
 the focus is on testing the security functionality, defined by the SFRs

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product testing according to CEM

• The goal is to test the behavior of TOE
 as described in ST and as specified in the evaluation evidence
 the focus is on testing the security functionality, defined by the SFRs

• Evaluators test TSF by
 devising own test cases
 re-running a subset of developer’s test cases

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product testing according to CEM

• The goal is to test the behavior of TOE
 as described in ST and as specified in the evaluation evidence
 the focus is on testing the security functionality, defined by the SFRs

• Evaluators test TSF by
 devising own test cases
 re-running a subset of developer’s test cases

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product testing according to CEM

• The goal is to test the behavior of TOE
 as described in ST and as specified in the evaluation evidence
 the focus is on testing the security functionality, defined by the SFRs

• Evaluators test TSF by
 devising own test cases
 re-running a subset of developer’s test cases

• CEM suggests alternate approaches only when it is impractical
to test directly specific functionality
 such as source code analysis

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Traditionally, emphasis is given to “functional testing” of
security features
 deterministic positive and negative testing prevails in the software industry

 accepted by CEM and prioritized by relevance to SFRs:
 SFR-enforcing TSFIs are covered
 SFR-supporting or SFR-non-interfering TSFIs are largely ignored

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Traditionally, emphasis is given to “functional testing” of
security features
 deterministic positive and negative testing prevails in the software industry

 accepted by CEM and prioritized by relevance to SFRs:
 SFR-enforcing TSFIs are covered
 SFR-supporting or SFR-non-interfering TSFIs are largely ignored

• The deterministic functional testing is good for confirming the
overall security architecture and design of the product.

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Recent advances in testing technology have shown that
deterministic functional testing is not sufficient for gaining
assurance in the security features of a product
 hackers pioneered random fuzzing of interfaces intended to penetrate

them

 fuzz testing is becoming more and more accepted by major software
vendors and incorporated in product development

 introduces the concept of probabilistic assurance

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

• Fuzz testing has evolved as black box testing to
uncover hidden vulnerabilities and implementation
bugs

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

• Fuzz testing has evolved as black box testing to
uncover hidden vulnerabilities and implementation
bugs

• Fuzz testing of a given interface (API, protocol, etc)
can be

 Brute-force
 invoke the interface with a completely random input data

 Adaptive
 use semi-random/semi-malformed input data

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

• Fuzz testing has evolved as black box testing to
uncover hidden vulnerabilities and implementation
bugs

• Fuzz testing of a given interface (API, protocol, etc)
can be

 Brute-force
 invoke the interface with a completely random input data

 Adaptive
 use semi-random/semi-malformed input data

• Open questions:
 What is the proper cost/benefit ratio for this type of testing?
 Can we map Fuzz testing results to EAL levels?

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz testing

• Fuzz testing has been used successfully to
uncover implementation bugs responsible for
 system crashes
 memory leaks
 unhandled exceptions
 buffer overflows
 dangling threads
 dangling pointers

• Most of these are code quality indicators, but
they have direct security implications

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz testing

• Fuzz testing has been used successfully to
uncover implementation bugs responsible for
 system crashes
 memory leaks
 unhandled exceptions
 buffer overflows
 dangling threads
 dangling pointers

• Most of these are code quality indicators, but
they have direct security implications

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz testing

• Fuzz testing has been used successfully to
uncover implementation bugs responsible for
 system crashes
 memory leaks
 unhandled exceptions
 buffer overflows
 dangling threads
 dangling pointers

• Most of these are code quality indicators, but
they have direct security implications

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

• Open questions:
 What is the proper cost/benefit ratio for this type of testing?

 Hackers, developers have different perspectives
 Where do evaluators stand?

 Can we incorporate this type of testing in CC?
 Can we map Fuzz testing results to EAL levels?

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Observation:
 TSFIs cannot be reliably prioritized for CC testing as

 SFR-enforcing
 SFR-supporting
 SFR-non-interfering

 This issue is particularly relevant for low (<4) EAL evaluations

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Observation:
 TSFIs cannot be reliably prioritized for CC testing as

 SFR-enforcing
 SFR-supporting
 SFR-non-interfering

 This issue is particularly relevant for low (<4) EAL evaluations

• Observation:
 Any TOE interface exposed to attackers may be security

relevant
 Hence, it should be tested thoroughly

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Observation:
 TSFIs cannot be reliably prioritized for CC testing as

 SFR-enforcing
 SFR-supporting
 SFR-non-interfering

 This issue is particularly relevant for low (<4) EAL evaluations

• Observation:
 Any TOE interface exposed to attackers may be security

relevant
 Hence, it should be tested thoroughly

• Observation:
 Fuzzing and interface-specific tests provide a good framework

for this

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Interface-specific testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Interface-specific testing

• Why Interface-specific testing?
 Interface-specific classes of attacks have emerged

 e.g., XSS for Web interfaces

 As software technology standardizes, so do the attacks
 Just recently hackers pulled off a major break-in using a classic SQL

injection
Heartland Payment Systems 2009 breach compromised 130+ Mil accounts

data

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Interface-specific testing

• Why Interface-specific testing?
 Interface-specific classes of attacks have emerged

 e.g., XSS for Web interfaces

 As software technology standardizes, so do the attacks
 Just recently hackers pulled off a major break-in using a classic SQL

injection
Heartland Payment Systems 2009 breach compromised 130+ Mil accounts

data

• Well-known classes of interface-specific
attacks lead to standard frameworks of tests
that are

 naturally adapted to the type of interface

 allow for state-of-the-art coupling with fuzzing for testing
multilayered interfaces/protocols

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Example: Well-known attacks/testing
techniques for Web Interfaces

 Cross-Site Scripting (reflected, Stored, DOM based XSS)
 Session Hijacking (session fixation, session side-jacking)
 Cross-site Request Forgery (also known as session-riding)
 Path Reversal
 Code Injection (PHP, HTML, SQL Injection)
 Command injection (LDAP, XPath, XSLT, HTML, XML, OS)
 File inclusions
 Use of poor encoding practice (base 64)/ Insecure cryptographic

storage
 Insecure direct object reference
 Information Leakage and Improper Error Handling

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Combining Fuzzing w/ Well-Known Tests
for Discovering Input-Based
Vulnerabilities

 (Pseudo-)Randomly
choose an input from
the entire input
space

 Invoke the
application with that
input

 Observe the
resulting output

 Look for 'odd'
behavior

 Exploit odd behavior

 Example: HTTP Header Fuzzing
7K:>6]"=:&X<ZE`,`)7?:0=/'53#.DMO:/_2`RZN6QB9

GET M?40G);>@!5#/>L5P_`+\@V3WB+_2_ HTTP/1.0

GET http://www.foobar.com/M?40G);>@!5#/>L5P
HTTP/1.0

GET http://www.foobar.com/so6gyhsiwgic.html
HTTP/1.0

GET http://www.foobar.com/so6gyhsiwgic.pl HTTP/
1.0

GET http://www.foobar.com/so6gyhsiwgic.ado
HTTP/1.0

GET http://www.foobar.com/so6gyhsiwgic.jsp HTTP/
1.0

GET http://www.foobar.com/so6gyhsiwgic.hs HTTP/

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Our Goal

• Promote the development of an interface-
based testing methodology for CC that

 complements the general interface-independent testing
methodology of CEM

 maps easily to EAL levels

 improves reproducibility of test results

 enhances the value of the evaluation

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Approaches to Adopting Interface-Based
Testing in CC
• Develop testing-related assurance packages

 combining fuzzing with interface-specific knowledge-based tests

• Modular assurance packages tailored to
specific product types
 e.g., Web product test package

 Cross-Site Scripting (reflected, Stored, DOM based XSS)
 Session Hijacking (session fixation, session side-jacking)
 Cross-site Request Forgery (also known as session-riding)
 Path Reversal
 Code Injection (PHP, HTML, SQL Injection)
 Command injection (LDAP, XPath, XSLT, HTML, XML, OS)
 File inclusions
 Use of poor encoding practice (base 64)/ Insecure cryptographic storage
 Insecure direct object reference
 Information Leakage and Improper Error Handling

Fuzzing on
interface
parameters

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Modular assurance packages and EAL

Some Interfaces Tested by Some Interface-Specific Tests With Some Fuzzing

Most Interfaces Tested by Some Interface-Specific Tests With Some Fuzzing

Most Interfaces Tested by Most Interface-Specific Tests With Some Fuzzing

Most Interfaces Tested by Most Interface-Specific Tests With More Fuzzing

All Interfaces Tested by Most Interface-Specific Tests With More Fuzzing

All Interfaces Tested by All Interface-Specific Tests With Most Fuzzing

EAL low

EAL high

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Benefits from modular test assurance
packages

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Benefits from modular test assurance
packages
• For developers

 Adopting state-state-of-the-art tests early in development
cycle saves expensive bug fixes during product evaluation

 Improves the quality of the product and helps avoid
embarrassing post-release “discoveries”

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Benefits from modular test assurance
packages
• For developers

 Adopting state-state-of-the-art tests early in development
cycle saves expensive bug fixes during product evaluation

 Improves the quality of the product and helps avoid
embarrassing post-release “discoveries”

• For evaluators
 Improves the likelihood of the discovery of critical security

problems by shifting the focus for known attacks from AVA to
ETE

 Improves the repeatability of evaluations and addresses a
weakness in the standard

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Benefits from modular test assurance
packages
• For developers

 Adopting state-state-of-the-art tests early in development
cycle saves expensive bug fixes during product evaluation

 Improves the quality of the product and helps avoid
embarrassing post-release “discoveries”

• For evaluators
 Improves the likelihood of the discovery of critical security

problems by shifting the focus for known attacks from AVA to
ETE

 Improves the repeatability of evaluations and addresses a
weakness in the standard

• For consumers
 Increases the security assurances provided by the product
 Increases the value of certification

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

• Rigorously defined testing modules lead to
state-of-the-art testing techniques

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

• Rigorously defined testing modules lead to
state-of-the-art testing techniques

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

• Rigorously defined testing modules lead to
state-of-the-art testing techniques

• Evaluators can reliably identify more security
flaws and systematically increase the rigor of
CC testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

• Rigorously defined testing modules lead to
state-of-the-art testing techniques

• Evaluators can reliably identify more security
flaws and systematically increase the rigor of
CC testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

• Rigorously defined testing modules lead to
state-of-the-art testing techniques

• Evaluators can reliably identify more security
flaws and systematically increase the rigor of
CC testing

• The definition of modular test packages can
be formalized to integrate in CC

søndag 30. august 2009

