
TickIT
International
TickIT

International
The quarterly journal of the TickIT software quality certification scheme ISSN 1354-5884

3Q06

Contents

Editorial ... Page 2

IT Security Assurance and Common Criteria Page 3

 by Mike Nash and Fiona Pattinson

Pair Programming .. Page 8

 by Jeff Langr

The Marque of the West Midlands .. Page 11

 by Daniel Dresner

Considering How to Reduce the Strain of Multiple Models Page 12

 by Andrew Griffiths

Automotive SPICE Gets Motoring .. Page 14



All copy and letters to be sent to the editor, at the following address:

TickIT Office, BSI, 389 Chiswick High Road, London W4 4AL.
Tel +44 (0)20 8996 7427 / Fax +44 (0)20 8996 7429

email: tickit@bsi-global.com
Copy on disk or email please – Copy should NOT be sent to the publisher

Copy Deadlines:
December 23 for publication January 15

March 31 for publication April 15
June 30 for publication July 15

September 30 for publication October 15

For advertising sales contact
Tina Shorter, Firm Focus, Folia, Flowers Hill, Pangbourne, Berks RG8 7BD.

Tel +44 (0)118 984 3949 Fax +44 (0)118 984 2493
email: tina@firmfocus.co.uk

Published by Firm Focus on behalf of BSI August 2006
www:firmfocus.co.uk

© BSI and contributors 2006. Opinions expressed in this publication are not necessarily those of BSI.

3Q06

f irm focus

IT security has been an issue exercis-
ing many nations over the past few
years – we now have a definition of the
Common Criteria that will allow the
ready recognition of IT security and
the level of assurance across the world.
Fiona Pattinson and Mike Nash give
us an understanding of how these cri-
teria work and will follow this up with
a detailed look at the assurance com-
ponents of the criteria in our next edi-
tion.

Many a traditional software qual-
ity practitioner, like myself, put a great
deal of reliance on the design review
process and the success achieved in an
‘ego-less’ exchange amongst peers as to
the adequacy of a piece of code design. When some of
the Agile methods came on the scene we were alarmed
at the apparent lack of this formal step! Well, ‘pair pro-
gramming’ is a practice that can be applied to the likes
of XP which results in better quality design and code
– Jeff Langr explains how the natural resistance to this
concept can be overcome to the benefit of software
quality.

Our lives seem to be dominated in recent times

by the juxtaposition of TickIT with
CMMI and a discussion of whether
one or the other should dominate.
Well, the commercial reality is that nei-
ther should – what should dominate a
company’s systems are its own require-
ments. So a complex model emerges
that has elements of TickIT, CMMI,
ITIL, ISO20000, and many more
needed to satisfy a company’s require-
ments. The $64,000 question is: ‘Can
we construct and use that model to sat-
isfy the competing factions?’ – Andrew
Griffiths believes he has the answer.

Talking of CMMI, I got to won-
dering what SPICE was up to nowa-
days – I noticed a recent press release

about Automotive SPICE which I thought might be of
interest to you. We will give more detail of how SPICE
is doing in later issues.

You will recall Intellect’s collaboration with the DTI
and the NCC in promoting a code of best practice for
SMEs a couple of years ago – we have an update on
what is currently afoot at the NCC from Daniel Dres-
ner and news of a new quality marque to boost confi-
dence in the ICT supply chain.

Mike Forrester



3Q06

In this article we briefly introduce the Common Cri-
teria (CC) standard and describe the operation of
the evaluation and validation schemes for IT prod-
ucts based upon that standard. In the next issue we
will describe the security assurance components of the
standard in more detail. Our audience is intended to be
those software quality and software process improve-
ment experts who have an interest in the evaluation or
certification of IT products using the CC or its ISO
equivalent, ISO/IEC 15408. Our aim is to give a brief
overview of the security assurance framework defined
by the standard. For more detailed and complete infor-
mation we suggest that the reader visit the Common
Criteria portal at http://www.commoncriteriaportal.
org/, or the web site for their national scheme. For
the UK, this is located at http://www.cesg.gov.uk. In
particular, we highlight that the security functional
requirements are a vital part of the Common Criteria
but are not discussed in any depth here!

What is Common Criteria?

Nearly all commercial off-the-shelf (COTS) informa-
tion technology features security properties and pro-
vides security functionality for its operation within an
organization’s IT infrastructure, such as authentication
and access control to enforce authorization require-
ments. The Common Criteria is an established, inter-
nationally accepted and locally mandated standards
framework for assessing the trustworthiness of security
functionality in information technology products. It
offers a powerful tool for product consumers to specify
security and assurance requirements for the technology
used to implement information systems. One part of
such an evaluation is to look at the relevant software
and product assurance processes. The CC does not
mandate any particular methodology or approach for
assuring software quality, but it does assess those proc-
esses that are in use by a developer for the IT product
under consideration.

A Brief Introduction to
Common Criteria

The Common Criteria standard has evolved from
the prior criteria for information security evaluation
defined by various nations – such as the European
Union’s ITSEC, TCSEC (the famous Orange Book
developed in the U.S.), Canada’s CTCPEC and the
U.S. Federal Criteria. It has been supported by all

these nations due to the recognition that a common set
of criteria offers real advantages to co-operating users
of assured IT products.

The CC philosophy is to provide assurance based
upon an evaluation (active investigation) of the IT
product that is to be trusted. Evaluation has been the
traditional means of providing assurance and is the
basis for prior evaluation criteria documents. In align-
ing the existing approaches, the CC adopts the same
philosophy. The CC process involves the assessment of
the documentation and of the resulting IT product by
expert evaluators, with increasing assurance based upon
increasing emphasis on scope, depth, and rigour.

The CC does not exclude, nor does it comment
upon, the relative merits of other means of gaining
assurance. Research continues with respect to alterna-
tive ways of gaining assurance. As mature alternative
approaches emerge from these research activities, they
will be considered for inclusion in the CC, which is
structured so as to allow their future introduction into
the criteria.

The Common Criteria is a multi-part standard,
and is intended primarily to be used as the basis for
evaluation of security properties of IT products. By
establishing such a common base, the authors hope
that the results of an IT security evaluation are mean-
ingful to a wider audience.

The Common Criteria was developed by the
Common Criteria Development Board (CCDB), a
committee originally set up by the major nations with
existing national criteria. These nations have been
joined by several other nations as signatories to the
Common Criteria Recognition Arrangement (CCRA),
an agreement which allows for mutual recognition of
certificates produced under all schemes that are part
of the arrangement (except high assurance evalua-
tions). It requires the use of the Common Criteria
and a Common Evaluation Methodology (CEM) as
the basis for the arrangement. There are currently (July
2006) nine certificate-producing nations and a further
thirteen nations that accept certificates issued under
the CCRA agreement.

Even for nations and organizations that do not
participate in the arrangement, the Common Crite-
ria standards have been recognized as a key develop-
ment in the security evaluation process. They have
been generally accepted world-wide through interna-
tional review and the publishing of the standards by
the International Standards Organization such as ISO/
IEC 15408 (parts 1-3) and ISO/IEC 18045.

IT Security Assurance and
Common Criteria
by Mike Nash and Fiona Pattinson

Next column

Common Criteria



3Q06

The Common Criteria standards may also be
used outside the arrangement agreed by the members
of the Common Criteria Recognition Arrangement
(CCRA), one example is the wider evaluation results
mutual recognition scheme that is employed in the
European region, originally developed by SOGIS1. A
further example of a nation that has adopted the ISO/
IEC version of the standards, but which has not joined
the CCRA, is the People’s Republic of China. Figure
1 shows the history and relationship of the Criteria
within ISO and the CCDB.

Under the CCRA (see Figure 2), nations that have
a national scheme for conducting evaluations, run
in accordance with the provisions of the CCRA, and
approved under the terms of the CCRA, are called cer-
tificate producing nations. In July 2006, these were:
Australia, Canada, France, Germany, Japan, Republic
of Korea, The Netherlands, New Zealand, Norway,
United Kingdom and United States of America.

Certificate consuming nations do not have a
national scheme for conducting evaluations but have
agreed to accept the certificates produced by the
nations listed above. These nations are Austria, Czech
Republic, Denmark, Finland, Greece, Hungary, India,
Israel, Italy, Singapore, Spain, Sweden and Turkey.

The Common Criteria Paradigm

The CC permits comparability between the results of
security evaluations conducted by different organiza-
tions in different countries. The CC does so by pro-
viding a common set of requirements for the security
functionality of IT products (described in Part 2 of the
standard) and for assurance measures applied to these
IT products during a security evaluation (described in
Part 3 of the standard). The functionality of these IT
products may be implemented in hardware, firmware
or software.

The evaluation process establishes a level of confi-
dence that the security functionality of these IT prod-
ucts and the assurance measures applied to them meet
these requirements. The evaluation results may help
consumers to determine whether these IT products
fulfil their security needs.

The CC is also useful as a guide for the develop-
ment, evaluation and/or procurement of IT products
with security functionality.

The CC addresses protection of assets from unau-
thorized disclosure, modification, or loss of use. The

categories of protection relating to these three types of
failure of security are commonly called confidential-
ity, integrity, and availability, respectively. The CC may
also be applicable to aspects of IT security outside of
these three. The CC is applicable to risks arising from
human activities (malicious or otherwise) and to risks
arising from non-human activities.

The CC is intentionally flexible, enabling a range
of evaluation methods to be applied to a range of secu-
rity properties of a range of IT products. Care should
be exercised to ensure that this flexibility is not mis-
used. For example, the CC should not be used to apply
unsuitable evaluation methods, or to assess irrelevant
security properties or inappropriate IT products, all of
which could result in meaningless evaluation results.

CC Assurance

The CC describes assurance as “Grounds for confi-
dence that an IT product meets its security objectives”
(or at least the security objectives defined for the target
of evaluation) and goes on to say “Assurance can be
derived from reference to sources such as unsubstan-
tiated assertions, prior relevant experience, or spe-
cific experience. However, the CC provides assurance
through active investigation. Active investigation is an
evaluation of the IT product in order to determine its
security properties.”

Evaluation has been the traditional means of gain-
ing assurance, and is the basis of the CC approach. The
CC philosophy asserts that greater assurance results
from the application of greater evaluation effort,
although the goal is to apply the minimum effort
required to provide the necessary level of assurance.
Evaluation effort depends upon:

1 The SOGIS agreement on the mutual recognition of certifi-
cates was originally based on the European ITSEC standard
and adopted by Finland, France, Germany, Greece, Italy, The
Netherlands, Norway, Portugal, Spain, Sweden, Switzerland
and the United Kingdom. The arrangement was subsequently
extended by these participants to include use of the CC at all
levels of evaluation.

�����������
������
������

�������
�������������������

���
����������������

���
����

���
����������������

�����
����

���
����������������

�����
����

���
����������������

�����

���
����������������

�����
�������

���
����������������

�����
������

���
����������������

�����
������

����
�������������

����

����
�������������
�������������

����

����
�������������
�������������

���������

��
�

��

Figure 1: IT evaluation standards evolution

Next column

Common Criteria



3Q06

• scope –that is, the effort is greater because a larger
portion of the IT product is included,

• depth –that is, the effort is greater because it is
investigated to a finer level of design and imple-
mentation detail,

• rigour –that is, the effort is greater because it is
applied in a more structured, formal manner.
Evaluation techniques that help create security

assurance include:
• analysis and checking of process(es) and

procedure(s),
• checking that process(es) and procedure(s) are

being applied,
• analysis of the correspondence between design rep-

resentations,
• analysis of the design representation against the

requirements,
• verification of proofs,
• analysis of guidance documents,
• analysis of functional tests developed and the results

provided,
• independent functional testing,
• analysis for vulnerabilities (including flaw hypoth-

esis),
• penetration testing.

Security Assurance Requirements
of The CC

For the remainder of this article, we will concentrate
on Part 3 of the CC, Security Assurance Requirements
(SAR). This part of the CC establishes a standard way
to express assurance requirements for products; it spec-
ifies a standard layout and contents for the documents
that define common requirements (called Protection

Profiles within the CC), and those that define specific
products to be evaluated (called Security Targets); it
provides a mechanism for combining these assurance
requirements into packages, and it defines some stand-
ard assurance packages called evaluation assurance
levels (EALs).
The CC describes the Security Assurance Require-
ments (SAR) using a class and family structure. An
overview of the structure is given in Figure 3 – Assur-
ance class/family/component/element hierarchy.

Common Criteria Assurance Requirements

Figure 3 – Assurance class/family/component/element
hierarchy

������������������������������
���������������������

���������
���������

����������

�������� ���������

���������

�����������

�������������������

��������������������

�����
���

����������

���������
��

������������

����
����������������

����������������������
��������

�������������
��������������������

������������������������������
�������������������

�����������
�������������

�������
���������������

���������������������������
������������

Figure 2:The evaluation and validation schemes of the CCRA

Common Criteria



3Q06

Each class addresses a particular aspect of assurance.
Within each class, the criteria are broken down into
families of related evaluation criteria, called compo-
nents. The components within a particular class have a
clearly defined relationship. For example, in Figure 4,
the class as shown contains a single family. The family
contains three components that are linearly hierarchi-
cal (that is, component 2 requires more than compo-
nent 1, in terms of specific actions, specific evidence,
or rigour of the actions or evidence). At present, the
assurance families in CC Part 3 are all linearly hier-
archical, although the CC notes that linearity is not a
mandatory criterion for assurance families that may be
added in the future.

Figure 4 – Sample class decomposition diagram

Evaluation Assurance Levels (EAL)

An evaluation assurance level is a predefined package
of evaluation components, describing a standardized
evaluation requirement in terms of scope, depth, and
rigour. A very generalised and informal description of
the EALs, and reflecting our field experience in their
use, is shown in Table 1.

In practice, all evaluations are based upon one
of these EALs, sometimes augmented with a few
additional components to address specific assurance
requirements. In the next part of this article we will
describe the assurance components defined in CC Part
3 in greater detail.

Acronyms

CC Common Criteria
CCDB Common Criteria Development Board
CCMB Common Criteria Management Board
CCRA Common Criteria Recognition Agreement
EAL Evaluation Assurance Level
PP Protection Profile
SAR Security Assurance Requirement
SFR Security Functional Requirement
SOGIS Senior Officials Group for Information
 Security of the European Commission
ST Security Target
TOE Target of Evaluation
TSF Toe Security Function

EAL1: functionally tested –
The lowest level defined in the CC, achievable without access to developer documentation. In practice,
EAL1 evaluations are hardly ever carried out.

EAL2: structurally tested –
Represents the best that can generally be achieved without additional work by the developer.

EAL3: methodically tested and checked –
Allows a conscientious developer to benefit from positive security engineering design without alteration of
existing reasonably sound development practices.

EAL4: methodically designed, tested, and reviewed –
The best that can be achieved without significant alteration of current good development practices. This
EAL is typically cited as the highest level generally achieved by commercial software.

EAL5: semiformally designed and tested –
The best achievable via pre-planned, good quality, careful security-aware development without unduly
expensive practices.

EAL6: semiformally verified design and tested –
A ‘high tech’ level for (mainly military) use in environments with significant threats and moderately valued
assets.

EAL7: formally verified design and tested –
The greatest amount of evaluation assurance attainable whilst remaining in the real world for real products.
EAL7 requires formal modelling and is very expensive and resource intensive to complete successfully. In
practice very few EAL7 evaluations have been performed, of products with severely limited functionality.

Table 1: Informal description of Evaluation Assurance Levels

Common Criteria



3Q06

References

• CCMB. Common Criteria Portal. Available from
http://www.commoncriteriaportal.org/.

• The Common Criteria Sponsoring Organizations.
“Common Criteria for Information Technology Secu-
rity Evaluation Version 2.3: Part 1: Introduction and
General Model.” , 2005.

• The Common Criteria Sponsoring Organizations.
“Common Criteria for Information Technology Secu-
rity Evaluation Version 2.3: Part 2: Security Functional
Requirements.”, 2005.

• The Common Criteria Sponsoring Organizations.
“Common Criteria for Information Technology Secu-
rity Evaluation Version 2.3: Part 3: Security Assurance
Requirements.”, 2005.

• The Common Criteria Sponsoring Organizations.
“Common Methodology for Information Technology
Security Evaluation : Version 2.3 : Evaluation Meth-
odology.” 2005.

• (ISO JTC 1/SC 27), International Organization for
Standardization. “ISO/IEC 15408-1:2005 Informa-
tion Technology – Security Techniques – Evaluation
Criteria for It Security – Part 1: Introduction and
General Model.”, 2005.

• (ISO JTC 1/SC 27), International Organization for
Standardization. “ ISO/IEC 15408-2:2005 Informa-
tion Technology – Security Techniques – Evaluation
Criteria for It Security – Part 2: Security Functional
Requirements.” , 2005.

• (ISO JTC 1/SC 27), International Organizationfor
Standardization. “ ISO/IEC 15408-3:2005 Informa-
tion Technology – Security Techniques – Evaluation
Criteria for It Security – Part 3: Security Assurance
Requirements.” , 2005.

• (ISO JTC 1/SC 27), International Organizationfor
Standardization. “ISO/IEC PDTR 15446: Guide on
the Production of Protection Profiles and Security Tar-
gets”, 2000

Mike Nash has a long background in security evaluation criteria.
His first involvement came in 1985, working initially within NATO
using the US TCSEC ‘Orange Book’, and then setting up and man-
aging the first UK evaluation facility. He helped develop the UK
national criteria, the ITSEC and finally the Common Criteria. On
the other side, he also advised major vendors and customers how to
prepare for and successfully achieve evaluation. He is currently the
Secretary of ISO/IEC Subcommittee 27 Working Group 3, which
is responsible for standardization of security evaluation criteria. He
is also the ISO Project Editor for Part 2 of ISO/IEC 15408, dealing
with Security Functional Requirements. He is a consultant to several
evaluation facilities and evaluation schemes.
Dr. Nash is a Director of Gamma Secure Systems Limited.

Fiona Pattinson is a laboratory manager for the information secu-
rity provider, atsec (www.atsec.com). atsec has acredited laboratories
for evaluation of requirements of Common Criteria under both the
German (BSI) scheme and the US (NIAP) scheme, and for FIPS
140-2, and Personal Identity Verification. atsec also provides services
for ISO/IEC 27001 and in IT security consulting.
Ms Pattinson is a Certified Information Systems Security Profes-
sional (CISSP) and Certified Software Development Professional
(CSDP). She earned her M.Sc. in ‘Computing for Commerce and
Industry’ from the U.K.’s Open University. She serves on the U.S.
INCITS CS1 committee ‘Cyber Security’ and works on the ISO
SC27 WG3 ‘Security Techniques’ working on Common Criteria
and other security standards.
Ms Pattinson’s IT career began in 1984 with assembly programming,
progressing through operations management, technical support, sys-
tems analysis, new-business development and as a software-develop-
ment quality and information-security consultant.

DIY WORKBOOKS
save time and money

 ISO 9001 TickIT
 ISO 9001 RAD
 ISO 9001 SSADM
 ISO 9001 PRINCE
 ISO 9001 Service Delivery

Listed on the Internet

http://www.nvo.com/management_systems–author

E. Sutherland, IEE Ind Aff
Trog Associates Ltd
P.O. Box 243
UK – South Croydon/Surrey, CR2 6NZ.

Tel +44 (0) 208 786 7094
Fax +44 (0)208 686 3580
Email trog@dial.pipex.com

Common Criteria



3Q06

Pair Programming

Next column

Pair programming is one of the most contentious prac-
tices of extreme programming (XP). The basic concept
of pair programming, or ‘pairing’, is two developers
actively working together to build code. In XP, the rule
is that you must produce all production code by virtue
of pairing. The chief benefit touted by pairing propo-
nents is improved code quality. Two heads are better
than one. Note that pairing is a practice that you can
use exclusively of XP.

However, a large number of developers despise
the notion of having to sit next to someone for the
better part of their work day. Reasons for resistance can
include:
• the belief that pairing is a waste of time and ineffec-

tive,
• the belief that pairing should only be used occa-

sionally,
• fear of exposing personal weaknesses,
• personality issues, including introversion.

Pairing is not for everybody. But too many people
resist pairing based on a knee-jerk reaction to what
they understand it to be. Usually, the practice and its
benefits are not fully understood.

Pairing Technique

There are only a few simple rules to follow if you
choose to do pair programming.
First and foremost: all production code must be devel-
oped by a pair. Conversely, this means that are plenty
of other activities that you can undertake in the absence
of a pair:
• work on any non-production code, for example:

the acceptance test framework, other tools, build
scripts, and so on; in most shops, these are in dire
need of attention,

• work on documentation,
• work on spikes for future stories,
• learn how to use a new third-party product; learn a

new coding technique; and so on …
• identify problem spots in the production code that

need refactoring,
• refactor tests,
• improve the existing test coverage if necessary.

Any of the above could be done better if a pair were
available, but they are usually lower risk activities. If
time is absolutely a factor, the non-pairing developer
can work on production code, but with the insistence
that such code is peer-reviewed after the fact.

Having a non-pairing developer work on produc-
tion code should be the exception, not the rule. As

such, it should be justified and treated as a high risk
activity.

The second pairing rule: it’s not one person doing
all the work and another watching. During a good
pairing session, the keyboard should be moving back
and forth between the two participants several times
an hour. The person without the keyboard should be
thinking about the bigger picture and should be pro-
viding strategic direction. They should also be helping
to ensure maximal code quality and minimal defects.

Third: don’t pair more than 75% of your work day.
A good, productive run of six hours of software devel-
opment is mentally exhausting. Make sure you take
breaks! Get up and walk around for a few minutes at
least once an hour.

Finally: you need to switch pairs frequently. Work-
ing with any one person for any extended duration will
not only drive you nuts, but you will begin to lose the
benefit of getting a fresh outlook on problems. Mini-
mally, switch pairs at least once a day. In fact, I pro-
mote switching pairs once in the morning and once
in the afternoon. In addition to getting new insight
on solving a problem, there is another, less obvious,
benefit to frequent pair switching.

Context Switching

When you sit down to work with a new pair, you must
switch mental contexts from the task you were work-
ing on to a whole new problem. Context-switching is
difficult. Work for only 55 minutes then switch tasks?
Seems outrageous. One might think, “It’ll take almost
that amount of time for me to come up to speed on
what you’ve just developed!”.

An XP rule of thumb is: when something is diffi-
cult or painful, do it more often until it becomes easier.
If integrating is a royal pain, do it more often until you
learn how to do it better, or at least until it’s apparent
you’ve hit the point of diminishing returns.

If context-switching takes too much time, do it

Pair Programming
By Jeff Langr

Say “pair programming” to a programmer and
he’ll probably frown or turn his back on you.
But add some rules the programmers must
follow--rules that help maintain each person’s
sanity--he just might come to find this practice
rewarding and beneficial. This article, reprinted
from Jeff Langr’s Web site, explains the rules
and how certain teams have reacted to this
structured version of pair programming.



3Q06

Pair Programming

more often. In theory, what this should do is force
developers to write better code. By ‘better’ I mean
code that accommodates cheap maintenance without
adverse impacts on the system.

If it takes me thirty – or even ten – minutes to come
up to speed on a task, yes, there is a thrashing prob-
lem. If instead the other developer has followed good
design/coding guidelines (small, composed methods,
no duplication, appropriate naming, and basic OO
design principles go a long way), context switching
should take only a couple minutes. Combine that with
a test-driven approach, and I can quickly focus on a
small amount of detail.

The Numbers

So how many people actively resist pairing? At a
large shop of ~300 developers (divided among sev-
eral teams), about fifteen (5%) of developers actively
resisted pairing when they embarked upon XP. The
rest of the people fell into one of three groups: skeptics,
interested adopters, and sheep, divided fairly evenly in
terms of numbers. After pairing for a few iterations,
perhaps five of the fifteen resisters learned to enjoy
it. Another five didn’t mind it enough to complain
any more, and another five hated it even more than
before.

Having consulted in a good number of XP shops,
my personal experience shows these percentages to be
pretty consistent. Based on what I’ve seen, you’ll end
up with from one to five percent of developers who
can’t or won’t pair. For most shops, that’s one or two
people.

Obviously there are always people who don’t voice
their objection and just go along with whatever is
tossed their way. You do want to ensure everyone has a
forum for feedback. I’ve solicited feedback via anony-
mous 3x5 cards, email, public forums, one-on-one
discussions, however I could. Beyond that, if someone
isn’t going to be honest enough to complain, I suspect
it says something about the caliber of that employee.

What To Do With These People

Any shop embarking on XP, RUP, Scrum, or whatever,
needs a coach to steer people in the right directions.
Engaging in a new process without a coach is worse
than trying to play a football game without a coach
– at least the football players have done it all before and
know some of the things to watch for.

It’s a coaching failure if I’m unable to turn some
of the pairing resisters around. And usually I can, by
working directly with them, by demonstrating the
benefits firsthand, and by ensuring that the process
otherwise goes smoothly. From my own exposure to
pairing, I initially thought it was a bad idea. After prac-
ticing it a bit, I didn’t necessarily love it, but recognized

the benefits and was willing to do it. Shortly thereafter,
I began to love what I was able to get out of it.

Most sizeable shops have small adjunct efforts. For
valuable resources, one-offs are a great place. There’s
also the possibility of working on non-production
code, such as tools for internal use.

Resisters might still be able to work within a team,
as long as they put up with their end of the bargain.
Remember that pairing is initially a way of doing con-
tinuous review. In lieu of pairing, the resister must ini-
tiate Fagan inspections or some other sort of formal
review. One way or another, the code must be reviewed
– otherwise you’ll get pricy consultants (like myself) or
unguided novices, producing unmaintainable garbage.
Often, people find that the evil of pairing is preferable
to the evil of group review.

Ultimately the rules should be up to the team, as
long as the rules satisfy the requirement that code is
reviewed. If the entire team revolts and insists upon
no pairing, then they can all do inspections or what-
ever review form acts as a second-best choice. If 95%
of the team insists upon pairing, and the sole remain-
ing developer can’t deal with it at all, the organization
should help them find something else to work on.

While this may sound intolerant, remember that
software development is a team effort. Suppose I go to
your shop and find out that you value RAD. You sit in
a board room with 25 other people for two days and
hash out every detail of the project. You then produce
200 pages of design documents. But I have a personal-
ity disorder that prevents me from contributing in such
an environment. I can’t stand sitting in a room for days
on end slogging through stuff, 95% of which is useless
to my role. And I also have a disorder that prevents me
from understanding design document doublespeak.

Do I belong in this organization? Probably not. If
the organization is successful with this culture, why
should they waste time and money trying to accom-
modate my abstinence?

I’m not trying to be clever or obtuse here. The point
is that organizations should grow the cultures that they
value, and that those cultures may not be appropriate
for everyone. Anyone who says every shop should do
XP or RUP or whatever is insane. The reality is that
there are always other shops to choose from.

Other Pairing Benefits

The book Pair Programming Illuminated (by Laurie
Williams and Robert Kessler, Addison Wesley Long-
man Publishing Co) goes into much further depth on
the costs and benefits of pair programming, in addi-
tion to many other related topics. I highly recommend
it. Over the years, I’ve built my own brief list of pairing
benefits.

Next column



3Q06

Pair Programming

General benefits:

• Produces better code coverage. By switching pairs,
developers understand more of the system. Many
benefits can result from this increased knowledge.

• Minimizes dependencies upon personnel. Everyone
worries less about buses and trucks.

• Results in a more evenly paced, sustainable devel-
opment rhythm.

• Can produce solutions more rapidly.
• Moves all team members to a higher level of skills

and system understanding.
• Helps build a true team.
Specific benefits from a management standpoint:

• Reduces risk.
• Shorter learning curve for new hires.
• Can be used as interviewing criteria (‘can we work

with this guy?’).
• Problems are far less hidden.
• Helps ensure adherence to standards.
• Cross-pollination/resource fluidity. Allows you to

swap members from two or more teams on occa-
sion, with minimal downtime. Usually each person
will bring immediate value to the new team (‘you
guys should use this utility class that we built
here...’).

Specific benefits from an employee perspective:

• Awareness of other parts of the system.
• Resumé building.
• Decreases time spent in review meetings.
• Continuous education. As someone who thinks he

is a pretty hot programmer, I still learn new things
every day from even the most junior programmers.

• Provides the ability to move between teams. (‘this
team is boring,’ ‘I can't stand working with him,’
‘that stuff they're doing looks cool’). Since this can
be a benefit for management as well, they don't
have to clamp down on their resources.

• More rapid learning as a new hire. You don't sit and
read out-of-date manuals for a week, or worry that
you're going to be fired because the system looks
indecipherable.
These benefits come about from monitoring the

process, making sure the technique is executed well,
and fixing problems. Don’t forget a coach!

Skill Level Gaps

An experienced developer can outperform an inexperi-
enced developer by two, three, five, ten or even twenty
times. Sitting with a novice can be excruciatingly pain-
ful. But I’d rather burn a little time bringing other guys
up to speed as soon as possible. It pays off in spades.

Pairing allows me to keep tabs on their work and
make sure they are not producing junk that will have

to be rewritten. It also prevents them from holding up
the project. Several years ago I was on a project that
ultimately got cancelled, largely due to a schmuck that
couldn’t get his work done in time, and when it did get
done, it was garbage. With a pair, incompetence that
can destroy a project surfaces far more quickly.

I still learn some very interesting things from work-
ing with novice developers. And they learn a wealth of
things that they would never learn were they to be left
to their own devices.

Leaving an inexperienced developer alone to suffer
through the system and other issues presents them with
a steep learning curve. Through pairing, this learning
curve begins to flatten more early on in the project.
The more time I spend up front with a novice devel-
oper, the more we can depend upon their contribu-
tions later in the project – when it matters far more.

Of course, the novice must be capable of growing.
Pairing lets you find out quickly who’s worth keeping
versus who will always be a drag on the team. Man-
agement can get involved in the first month or so of
a project, as opposed to late in the project when it’s
crisis time.

Final Comments

I’ve been in the position of promoting XP and hence
pairing as a consultant for a while now. Until I did a
longer, six-month consulting stint, my pairing experi-
ence was more sporadic. Sure, I saw the benefits and
the negatives, and did it enough to know how to make
it work. Plus I learned plenty more about it from other
sources. But until I sat there and actively paired for
a longer duration, some of its nuances weren’t as evi-
dent.

In fact, pairing seemed to me like a nice thing to
promote, but maybe pairing wasn’t something that I
needed to worry so much about. Not drinking my own
kool-aid!

What I realized is that pairing after a while becomes
a dependency, in both a good way and a bad way. I
learned to look forward to most pairing sessions (there
are always some difficult people). I also felt naked
when not pairing, and began to question more what I
produced by my lonesome self. Pairing became assur-
ing and thus relaxing.

Before, I would be overly confident that I was a
great programmer and that I produced code that was
just fine. Maybe not! A few pairings with some sharp
people and I learned a few cool new techniques. I took
on more humility.

Dependencies in code can be bad, as can depend-
encies in life. The secret is in managing these depend-
encies well. Learn to use pairing as a tool to help you
do better the next time you aren’t.

Copyright ©: 2006, Jeff Langr. All rights reserved.

Next column



3Q06

Jeff Langr has been
loving and living soft-
ware development since
1982. He’s the author of
two books, Agile Java:
Crafting Code With Test-
Driven Development
(Prentice Hall, 2005)
and Essential Java Style
(Prentice Hall, 2000),
as well as over twenty
published articles. He’s
currently working with
Bob Koss to write a
book that shows how to do test-driven development in C++. Jeff
helps development teams improve their productivity by mentor-
ing and training through his company, Langr Software Solutions
(http://langrsoft.com).

15288 (Systems lifecycles), ISO 15504 (process assess-
ment) and, of course, our own dear TickIT. In fact,
it’s not just complementary; it positively encourages a
greater interest in these standards.

Businesses will be assessed on three pillars of the
right processes being realized by the right people,
and resulting in the right level of performance. The
standard – already in its first draft – looks at essential
processes, the retention of staff to deliver the business
benefits of the opportunities that arise, and a scorecard
of performance measures that shows the effectiveness
of all that activity for the supplier and its customers.

The standard will be published as a general bench-
mark for all ICT suppliers with appendices for specific
segments of the industry. This recognizes the differing
skills and competencies of the reseller and the product/
service developer.

This work is extremely timely and dovetails with
NCC’s alliance with the BCS, Intellect, and e-SkillsUK
on the professionalism in IT agenda.

http://www.isprofessionalism.org.uk/
It is a pragmatic piece of work which is thoroughly

designed and reviewed by the stakeholders.
http://www.ictss.org.uk/
TickIT International will continue to chart its

progress.

There’s Corgi for the gas installers and the Federation
of Master Builders. Sometimes these marques can be a
helpful starting point when personal recommendations
are few and far between. But what about the suppliers
of ICT services? What marque of reliability builds the
trust in the small local firm that can cable your build-
ing, or give you a tailored point-of-sale system that will
allow your small shop to expand?

Advantage West Midlands (a regional development
agency) recognized that there is an opportunity to
improve local services for customers of ICT and boost
business opportunities for those SMEs who supply
it. AWM briefed the National Computing Centre to
build a consortium of purchaser and supplier stake-
holders to assess the opportunities for a new quality
marque to boost confidence in the ICT supply chain.
The objective is to create an environment of trust that
helps ensure a fair and rewarding price for the suppliers
to charge, and value for money for the customers.

From this project an ICT supplier standard is
emerging to which ICT suppliers can be accredited.
It will be available to any size of ICT supplier, but will
have a particular emphasis on helping SMEs, who rep-
resent 98% of the market.

The standard is being developed to be wholly com-
plementary to established work including (to name but
a few) ISO 27001 (security), ISO 9001 (quality), ISO

The Marque of the West Midlands
by Daniel Dresner

ISO 9000/BS7799
Guaranteed Results!

• 100% clients registered first time
• Consultant/Trainer since 1990
• Lead TickIT Auditor since 1992
• TEC & Business Link funded projects
• Practical advice and training

Consultancy Training Pre-Assessments

Bal Matu BSc(Hons) C.Eng.MIIEE FIQA MAQMC

Lead TickIT Auditor

Tel/Fax: 44 (0)1928 723701
bal@bsmqa.demon.co.uk

Marque of West Midlands



3Q06

Multiple Models

Next column

Why the Interest in Multiple Models?

This is a complex question that has several dimensions
depending on the nature of your business but some of
the key drivers are:
• The market penetration of offshore services from

India where various process improvement (PI)
models have been used to support the sales and mar-
keting process, most notably CMM/CMMI. This
has led to an increased awareness of these models in
UK plc, thereby driving adoption locally.

• Many global companies and government bodies
run open competitive tendering processes; these
can often result in a larger volume of responses that
can be time-consuming and expensive to evaluate.
The insertion of a few quality standards to act as
a qualification bar (even if there is no substantive
internal interest in the specific standards) is becom-
ing commonplace.

• The use of supplier assessments for strategic pro-
curement by, or on behalf of, purchasers, is becom-
ing more common with CMMI (outside of US
DOD), BS ISO/IEC15288:2002 and BS ISO/
IEC15504:2003 gaining significant ground.

• The response of system integrators and software
companies to client interest in PI models has been
to look to achieve against these models to avoid
disqualification from future procurement.

• There seems to be a clearer understanding in the
market that the various PI models are useful, but
for specific purposes and scope.

How the world has changed over the last 24 months.
The cautious return to investment in software for stra-
tegic advantage is gathering pace and with it the asso-
ciated investment in process improvement. The level
of investment is not the only thing to have changed;
the focus on process improvement models is sharper
than ever, with CMMI and ITIL being the two strong
growth areas. Where does this leave ISO 9000 and
TickIT? Interestingly enough, still very much in the
game but with a dent in market share.

Before we go any further what’s CMMI? (This
is the very short version.) To quote the SEI’s website
the CMMI: “Capability Maturity Model® Integra-
tion (CMMI) is a process improvement approach that
provides organizations with the essential elements of
effective processes”. In some respects the CMMI can
be described as a set of tools: a model of best prac-
tice against which to review your processes; a model
of how to improve your processes; and an associated
appraisal method to assess an organization. The SEI
provides a framework for ensuring the quality of the
delivered appraisals and training (through SEI Part-
ners; beware there are non-SEI approaches for CMMI
that are unregulated).

The model consists of Process Areas (PA). Each
process area comprises a set of practices that direct
improvement. There are two main ‘representations’
of the model which embody different approaches to
implementing process improvement. The ‘staged’ rep-
resentation provides a structured route through the
improvement process. The ‘continuous’ representation
enables selection of an organizational-specific route for
the process improvement.

The SEI-sanctioned appraisal method is the
SCAMPI (Standard CMMI Appraisal Method for
Process Improvement). Three different classes of
appraisal are available. A Class ‘A’ appraisal is the
formal means of determining the level to which the
model is satisfied. It delivers a highly rigorous, and
reliable means of assessing the organization. Results
of this class of appraisal can be posted on the SEI’s
website. Lighter approaches are available through
Class ‘B’ and ‘C’ appraisals. The range of classes of
appraisal addresses the different needs of an organiza-
tion dependant upon where it is in its improvement
journey: the formal check, the robust baseline and the
quick look.

Considering How to Reduce the
Strain of Multiple Models

By Andrew Griffiths

���������

������

����

����

Figure 1: Multiple Models



3Q06

Multiple Models

Often one model in isolation will not meet an
organization’s improvement objectives and the set of
models chosen is usually driven from three main per-
spectives: systems and software engineering, operabil-
ity and governance.

So What’s the Problem With This?

Let’s imagine a real organization where they are using
CMMI + COSO + TickIT to address their business
needs. (Note: COSO is The Committee of Sponsor-
ing Organizations of the Treadway Commission, a US
financial governance organization.) This would gener-
ate multiple appraisals on the organization in question,
with some groups being reviewed on every appraisal.
(Just before anyone mentions it, there is an option in
the SCAMPI method to run an ISO15504-compatible
appraisal). What if the organization is a System Inte-
grator with a diverse customer base and markets? It is
likely that a few more PI models would be added into
the mix to cater for the demands of specific clients.
This is building a very real, overlapping appraisal over-
head that, when you roll up all the involved people, is
beginning to look too large.

What can be done?

Well, as ever, these useful models come from different
organizations, which provide little or no integration and
certainly no cross-model appraisal approaches. Clearly
a single appraisal could be completed to address some
of these models together (for example, CMMI, ITIL,

TickIT) but the governing organizations would almost
certainly not recognize any results of such an appraisal.
However, I think it may be simpler than it appears. The
SEI’s SCAMPI appraisal method is executed to a high
standard of consistency and requires more supporting
evidence in the process than the other models (many
do not even have a matching appraisal method). The
SCAMPI method requires a model organized in a par-
ticular way (process areas, generic goals, specific goals
and so on) that is not the way the other models are
organized. So, work is required to integrate the models
required for the appraisal together. To provide a spe-
cific example, let’s take CMMI + ITIL – in true ‘Blue
Peter’ fashion I have one I prepared earlier (actually
one Kieran Doyle prepared earlier, to be accurate).

The integrated model of CMMI + ITIL (Figure 2)
was created by examining the overlap between these
two models and creating additional CMMI process
areas to cover the components of ITIL uncovered, the
operability management category. Also, a number of
small additions were made to specific practices in the
CMMI where extending the process area was more
appropriate. Some of the differences in emphasis
between CMMI and ITIL create some friction, such
as completing causal-based analysis is a much earlier
requirement in ITIL than CMMI; the easiest way to
reconcile this is to use the continuous representation.
Staged is not impossible, but much more work would
be required. Before I continue I must emphasise that
this approach is a proposed approach, not once sanc-
tioned by the SEI!

Figure 2: CMMI + ITIL – an integrated view

�������
����������

�����������

�������

�������
����������

�����������
����������

��������
��������

������������
����������

������������
����������

��������������
�������
�����

���������
������������
����������

������������
�����������

�����������
�

��������

������������
�������

��������

���������
�

����������

��������
���������

����������

���������
��������

�������
���������
�������

���������

��������������
��������

�������
�����

����������

����
����������

����������

��������
���������

�
����������

��������������
����������

�
����������

�������
����������

�
������������

����������
�������

�����������

������
��������

�
����������

��������������
�������

�����������

��������
��������

����������
�������

����������

�������
�����������

��������������
�����������

���
�����������

������������
�������

����������

����������
��������

����������

�������
����������

�
�������

�������� �������������



3Q06

Automotive Spice

We now have a strong appraisal method, with a
model that we can demonstrate covers a combined
CMMI + ITIL scope. So all we have to do is run a
SCAMPI A appraisal against this and we have a CMMI
+ ITIL result, right? Well, no. The ‘small additions’
to the base CMMI model would certainly jeopardise
acceptance of the results from the SEI perspective.
Covering the additional process areas adds complex-
ity too, but this is a secondary issue. Given SCAMPI
is not the way to conduct an ITIL appraisal, and the
appraisal has been conducted against a combined
model, I can foresee similar problems here.

So why tell you all this? Simply, this approach
probably cuts an acceptable compromise that recog-
nizes some of the ‘political’ issues (from a model per-
spective). Additionally I expect to test this theory more
rigorously over the next twelve months. I hope my
pragmatic optimism is well placed.

Andrew Griffiths joined
Lamri in 2003 as Managing
Director: bringing his expe-
rience of large-scale process
improvement, RUP deploy-
ment and out-sourcing to
the Lamri team. Andrew has
worked in process improve-
ment since 1994 using
many tools and techniques
including CMM, CMMI,
Booch, UML, DSDM, RUP,
Objectory and various devel-
opment tools across the life-
cycle. He is a regular speaker
at conferences and seminars on topics including the application of
CMMI, Off-Shoring, Programme and Architectural Governance.
www.lamri.com
andrew.griffiths@lamri.com

tive suppliers in meeting the challenge of developing
embedded software” said, Alec Dorling, Automotive
SPICE assessor, Impronova, Sweden.

The scope of certification includes the design,
development, conversion/porting, maintenance and
testing of software systems in the automotive domain.

Automotive SPICE™ has developed a common
framework for the assessment of suppliers in the Auto-
motive Industry through the publication of the Auto-
motive SPICE™ Process Assessment Model and Process
Reference Model.
For more information see: www.wipro.com/

Wipro Technologies, the Global IT Services Divi-
sion of Wipro Limited (NYSE:WIT) has announced
that its Automotive Group has achieved Automotive
SPICE™ Organizational Maturity Level 5 certification
under the PATHFINDER™ interim assessment and
certification scheme for process capability and organi-
zational maturity.

Wipro Technologies Automotive Group is the first
organization in the world to achieve Maturity Level
5 and is the first organization to achieve certification
under the PATHFINDER™ scheme claims the com-
pany.

The Automotive SPICE™ initiative includes car
manufacturers such as AUDI AG, BMW Group,
DaimlerChrysler AG, Fiat Auto S.p.A., Ford Werke
GmbH, Jaguar, Land Rover, Dr. Ing. h.c. F. Porsche
AG, Volkswagen AG and Volvo Car Corporation.

A joint assessment team from Impronova AB
(Sweden) and KPMG (India) performed the PATH-
FINDER™ assessment. The assessment team leader
was Alec Dorling from Impronova AB. Impronova AB
is an approved Ford Software Quality Partner.

 “We went through rigorous review and analysis of
Wipro’s automotive software methodology and we are
pleased to award the AutomotiveSPICE Level 5 certifi-
cation to Wipro. We are sure that this certification cou-
pled with Wipro’s stringent quality standards will be of
great value to car manufacturers and the tier 1 automo-

Automotive SPICE Gets Motoring
I got to wondering what SPICE was up to nowadays and in the recent press I noticed a press release about

Automotive SPICE which I thought might be of interest to you: Wipro Technologies, the Global IT Services Division
of Wipro Limited (NYSE:WIT) has announced that its Automotive Group has achieved Automotive SPICE …’

Software
Measurement

Do your capabilities match
ISO 9001:2000 requirements?

Measurement programme
consultancy, support, set-up

Visit
www.qasoft.demon.co.uk

