
©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

Jeremy Powell, Trupti Shiralkar

Trusting Virtual Trust

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

2

Agenda

 The Java Virtual Machine
 Unmeasured Trust
 Java's Assurance

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

The Java Virtual Machine

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

4

A Few Quick Disambiguations

 Overloaded terms
 “Virtual Machine” could mean...

• A system virtual machine
- Xen
- HyperV
- VMWare

• A process (application) virtual machine
- Java
- Common Language Runtime

 We mean a “process virtual machine”

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

5

A Few Quick Disambiguations

 Overloaded terms
 “Java” could mean...

• ...a spoken language
• ...an island
• ...coffee
• ...a programming language
• ...an application platform
• ...a virtual machine

 We mean “the Java Virtual Machine”
 ...usually

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

6

Just what is the Java Virtual Machine?

 Developed by Sun Microsystems
 Interprets and runs bytecode
 Virtualizes an abstract processor

Java
Source Code

Java
Bytecode

Native
Instructions

Compiler

JVM

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

7

Bytecode

 Looks very much like native assembly code
 0:
 iconst_1
 1:
 istore_1
 2:
 iconst_1
 3:
 istore_2
 4:
 iload_2
 5:
 bipush
 100
 7:
 if_icmpge
20
 10:
 iload_1
 11:
 iload_2
 12:
 imul
 13:
 istore_1
 14:
 iinc
 2, 1
 17:
 goto
 4
 20:
 getstatic
 #2
 23:
 iload_1
 24:
 invokevirtual
 #3
 27:
 return

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

8

Typed Memory

 C / C++ - Memory organized into words
 Java - Memory organized into objects

Words V.S.

0xdeadbeef
0x0coffee0

0x5932a6ef

0zfffffffe

0z08679305

String:
“Hello, World!”

BigInteger:
35960259603520
45360242063240
14501403503629
70493759305039
45

Password:

Objects

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

9

Popularity

 Web application servers
 Browser applets
 User Applications
 Smart card platforms
 Cell phones
 Embedded systems
 Game consoles
 Scientific computing

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

10

What's the big deal?

 Write Once, Run Anywhere
 Automatic memory management
 Already installed on most computers
 Generous standard libraries
 Heavily specified – reliable behavior
 Free
 Secure

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

Unmeasured Trust

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

12

The Need for Measured Assurance

 Measuring assurance answers...
• What security does Java really provide?
• How sound is its design?
• How correct is its implementation?
• How does one use Java securely?

 Without measured assurance, we take
unnecessary risk

 The risk is growing. Fast.

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

13

Revisiting Portability

 Write Once, Run Anywhere
 Less code written

• Eliminates system and hardware nuances
• Reduces analysis effort
• Wide deployment of the same code

 Wide deployment means single point of
failure

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

14

A Single Point of Failure

x86 x86_64 sparc arm ppc

Application Server Web
ApplicationApplet

JVM

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

15

Can't sleep? Count Java implementations!

 CEE-J
 Excelsior
 J9
 JBed
 JamacaVM
 Jblend
 JRockit
 Apple's MRJ
 MicroJvm
 MS JVM
 Blackdown Java
 C virtual machine
 Gemstone
 Golden Code

Development

 Jelatine JVM
 JESSICA
 Jikes RVM
 JNode
 JOP
 Juice
 Jupiter
 JX
 Kaffe
 leJOS
 Maxine
 NanoVM
 SableVM
 and more...

 Intent
 Novell
 NSIcom CrE-ME
 ChaiVM and

MicrochaiVM
 Hotspot
 AegisVM
 Apache Harmony
 CACAO
 Dalvik
 IcedTea
 IKVM.NET
 Jamiga
 JamVM
 JC

http://en.wikipedia.org/wiki/List_of_Java_virtual_machines

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

Java's Assurance

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

17

The Elephant in the Room

 So, if...
• Java is very popular
• Used widely
• And has many implementations....

 Why hasn't Java been CC evaluated?
• Seemingly less vulnerabilities than C or C++
• Not tied to a bottom line
• Uncertain what security functions are provided

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

18

Java Prevents Common C/C++ Problems

 No stack smashing
 No heap corruption
 No format string attacks
 No reference forging
 No type confusion

(...all prevented by the type system)

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

19

Developer Incentives Outweigh Costs

 No mandatory evaluation of Java
 Evaluated Java returns same as Unevaluated

Java – Nothing
 CC Evaluation is expensive
 Partial Motivation – first implementations

evaluated may get edge on market

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

20

Java and Security

 The JVM provides memory safety
• Enforcement of language security (public/

private)
• References cannot be forged

- Prevents type confusion
- Provides capability access control

• Stack and heap corruption prevented
 Cryptography (JCA)
 Sandboxing access control (JAAS)

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

21

A Smattering of SFRs

 User Data Protection
• Capabilities
• Access Control Lists
• Zeroed memory on allocation

 Cryptography
 Identification and Authentication
 Auditing

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

22

Next steps

 Understand the necessity
 Write a protection profile

• Defines the Process Virtual Machine security
problem

• Demonstrates demand
 Evaluate an implementation

• Java is well studied in academia – higher EALs
may be possible

• Produces ECG – How to use Java securely

mandag 31. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

Jeremy Powel – jeremy@atsec.com
Trupti Shiralkar – trupti@atsec.com

Thank You!

mandag 31. august 2009

